THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010C/D Advanced Calculus 2019-2020 Assignment 1, Due Date: 23 Jan, 2020

- 1. In $\triangle ABC$, $\overrightarrow{AB} = 4\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{AC} = -12\mathbf{i} + 8\mathbf{j}$ and points P, Q lie on BC such that BP : PQ : QC = 1 : 2 : 1. Find $\angle PAQ$.
- 2. Let A = (4,3,6), B = (-2,0,8) and C = (1,5,0) be points in \mathbb{R}^3 .

Show that $\triangle ABC$ is a right-angled triangle.

- 3. Suppose that $\mathbf{m}, \mathbf{n} \in \mathbb{R}^n$, where $|\mathbf{m}| = 2$, $|\mathbf{n}| = 1$ and the angle between \mathbf{m} and \mathbf{n} is $\frac{2\pi}{3}$. If $\mathbf{p} = 3\mathbf{m} + 4\mathbf{n}$ and $\mathbf{q} = 2\mathbf{m} - \mathbf{n}$, find
 - (a) $\mathbf{m} \cdot \mathbf{n}$,
 - (b) $|\mathbf{p}|$ and $|\mathbf{q}|$,
 - (c) the area of the parallelogram spanned by ${\bf p}$ and ${\bf q}.$
- 4. Suppose that A, B and C are points on \mathbb{R}^2 such that OABC is a kite with OA = OC and AB = CB. Let \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} be **a**, **b** and **c** respectively.
 - (a) Express \overrightarrow{AB} and \overrightarrow{CB} in terms of **a**, **b** and **c**.
 - (b) By considering AB = CB, show that $\mathbf{b} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{c}$.
 - (c) Hence, show that $OB \perp AC$.
- 5. Let $\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\overrightarrow{OB} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OC} = 5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$.
 - (a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (b) Find the volume of tetrahedron OABC. (Hint: Its volume equals to $\frac{1}{6} \times \text{volume of parallelotope spanned by } \overrightarrow{OA}, \overrightarrow{OB} \text{ and } \overrightarrow{OC}$.)
 - (c) By (a) and (b), find the distance from O to $\triangle ABC$.
- 6. Given A = (3, -1, 3), B = (0, 7, -2) and C = (-9, 3, -3) be three points in \mathbb{R}^3 .
 - (a) Find the coordinates of a point D if AC, BD are perpendicular and AD, BC are parallel.
 - (b) i. Find $\angle DCB$.
 - ii. Show that A, B, C, D are coplanar (i.e. lying on a same plane) and find the equation of the plane which contains them.
 - iii. Show that ABCD is a square and find the area of it.
 - (c) VABCD is a pyramid with base ABCD. If V = (12, -14, -12),
 - i. find the volume of the pyramid;
 - ii. find the angle between the plane VAB and the base.

- 7. Suppose that $L_1: x + 1 = \frac{y-2}{-2} = \frac{z+3}{2}$ and $L_2: \frac{x-1}{-1} = \frac{y+2}{2} = \frac{z-6}{3}$ are two straight lines.
 - (a) Show that L_1 and L_2 intersect each other at one point and find the point of intersection.
 - (b) Find the acute angle between L_1 and L_2 .
 - (c) Find the equation of plane containing L_1 and L_2 .
- 8. Let $\Pi_1: x 2y + 2z = 0$ and $\Pi_2: 3x + y + 2z = 4$ be two planes and let P(1, 2, -1) be a point in \mathbb{R}^3 .
 - (a) Find the angle between Π_1 and Π_2 .
 - (b) Find the equation of the line passing through the point P which is parallel to the intersection line of the planes Π_1 and Π_2 .
- 9. Let A = (1, 1, 0), B = (0, 1, 1) and C = (1, -1, 1) be three points in \mathbb{R}^3 and let Π be the plane containing A, B and C.
 - (a) Find the equation of the plane Π .
 - (b) Suppose that

$$L: \frac{x-1}{5} = \frac{y-1}{6} = z$$

is a straight line passing through the point A and L' is the projection of L on Π . Find the equation of L'.

10. (a) Let Π be a plane in \mathbb{R}^3 given by the equation Ax + By + Cz + D = 0 and let $P(x_0, y_0, z_0)$ be a fixed point. Show that the perpendicular distance between Π and P is $\left| \frac{Ax_0 + By_0 + Cz_0 + D}{\sqrt{A^2 + B^2 + C^2}} \right|$.

(b) Let Π₁: 2x - 2y + z - 4 = 0 and Π₂: x + 2y - 2z = 0 be two planes in ℝ³. Find the equation of plane(s) passing through the intersection lines of plane bisecting the planes Π₁ and Π₂.

(Hint: Suppose that **p** is a point lying on the required plane, then the distance between **p** and Π_1 equals to the distance between **p** and Π_2 . Draw a picture to see why there are two such planes.)